
In-memory Computing Low Level Programming Model
& Compiler Innovation

or “What is a compiler support for IMC accelerator”
Pearls on Tool Chains of In-memory Computing

MSC@ESWEEK 2024

Henri-Pierre CHARLES

CEA DSCIN department / Grenoble

Thursday, October 3

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : Amhdal Law’s ?

Ahmdal law’s: “Speedup is limited by the sequential part”

Acceleration limited by the “X” part : S = 1
1−p

X ∈ {Parallel, Vectorized, using IP bloc, . . . }

Programmer approach
“This part is parallel” let’s optimize !
It’s better to fight for a small x2 than for a big
x5 !

What to optimize

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 2

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : Niklaus Wirth (15 February 1934, 1 January 2024)

Niklaus Wirth in 2005. Niklaus Wirth Wirth Projects
Pascal 1968-1972 Pascal2 / P-Code - UCSD -
TurboPascal
Modula2 1973-76
Oberon 1977-1980
Lilith 1977-1981

Books / Articles
“The Pascal User Manual and Report”
Algorithms + Data Structures = Programs
Wirth’s law (1995) “Software is getting slower
more rapidly than hardware is becoming
faster.”
Article "A Plea for Lean Software"

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 3

https://en.wikipedia.org/wiki/Niklaus Wirth
https://en.wikipedia.org/wiki/Algorithms + Data Structures = Programs
https://en.wikipedia.org/wiki/Wirth's law

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : Low Level Programming Models

Programmer view
How to use an IP block from my program ?

How to activate silicon blocks aka IP
1 Independent block
2 CPU Write Control Register / active waiting :

device handling in OS
3 Included into ISA + asm intrinsic
4 Include into ISA + IR + code generation

Pro / Cons
1 Nothing to do
2 Huge Programmer Effort : hidden in OS
3 Huge Programmer Effort :

cast data in & out
manually select instructions

4 Compiler global view :
Better global optimization opportunities
If IP has possible optimizing parameters ->
include higher level optimization
automatic correct instruction selection

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 4

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : CISC-versus-RISC

RISC CISC
“Complex” versus “Reduced” has no meaning.

RISC : compute instructions, memory
instructions
CISC : compute instructions with memory access
(need microcode)

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 5

Introduction Compiler Innovation C-SRAM support Conclusion

Programming Model : Model-and-Compiler

Compiler life (gcc)
more than 40 year
more than 100000 files
precursor in terms of “eco conception”

Compiler Contains
SSA form : program as transformable data.
Program transformation : parallelization,
vectorization ...
Register allocation.
Instruction scheduling : based on data type
arithmetics
Asumptions about target
Pattern matching for low level instructions
selection

Illustration

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 6

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 7

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 8

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 9

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 10

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 11

Introduction Compiler Innovation C-SRAM support Conclusion

Compilette principle : “Working Example”

Control flow in application

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 12

Introduction Compiler Innovation C-SRAM support Conclusion

Compilette principle : “Working Example”

Control flow in application with dynamic adaptation

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 13

Introduction Compiler Innovation C-SRAM support Conclusion

List of Code Generation Scenarios

Compilation scenarios
(a) Static compilation
(b) Dynamic adaptation

1 Program initalization
2 Kernel initialization
3 Application controlled
4 Heterogeneous architecture

(multi-isa support)

Target list
RISCV (Embedded system)
CSRAM (Embedded system)
POWER 8 (HPC computer)
AARCH64 (both)
Others (both)

All following scenarios examples works
on all platforms

Illustration

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 14

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : HybroLang DSL description

Specific features
C like syntax
Variable are hardware registers
Mix run time data values and binary code

#(C expression) include C expression
Datype triplet
arithmetic wordlen vectorlen

int 32 1 scalar int
flt 32 2 vector of 2 floats
flt 32 #(vlen) vlen vector of floats
flt #(wlen) 4 vector of 4 floats of size wlen

“Multi-time” Code Generation
Static time : Generate binary code generator

Included into compilation chain, remplace a part
of the C code

Run-time : Generate binary code
Faster than any JIT
Small code generator able to fit on embedded
platforms

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 15

Introduction Compiler Innovation C-SRAM support Conclusion

HybroGen : Simple-Add-Source

Simple Addition with specialization

typedef int (* pifi)(int);

pifi genAdd (pifi ptr , int b)
{

#[
int 32 1 add (int 32 1 a)
{

int 32 1 r;
// b values will be included in code generation
r = a + #(b);
return r;

}
]#
return (pifi) ptr;

}

Compilette usage

// Generate instructions
fPtr = genAdd (fPtr , in0);
// Call generated code
res = fPtr(in1);

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 16

Introduction Compiler Innovation C-SRAM support Conclusion

Examples : CSRAM (Computational SRAM)

Architecture Programmer view
Single program flow
Non Von Neumann model : CPU send
instructions to CSRAM
DSL approach, which express

Heterogeneous computation (DONE)
Memory hierarchy (ONGOING)

Software support
HybroLang compiler
https://github.com/CEA-LIST/HybroGen

Functionnal emulator (based on QEMU): https:
//github.com/CEA-LIST/csram-qemu-plugin

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 17

https://github.com/CEA-LIST/HybroGen
https://github.com/CEA-LIST/csram-qemu-plugin
https://github.com/CEA-LIST/csram-qemu-plugin

Introduction Compiler Innovation C-SRAM support Conclusion

Inverted Von Neumann Programming Model

Choosen Programming model

Why ?
Allows scalability :

Any vector size
Any tile number
Any system configuration : near or far IMC

Works with any processor
In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 18

Introduction Compiler Innovation C-SRAM support Conclusion

Programming Model : Image Diff

Mini code Example : HybroLang code example

pifiii genSubImages (h2_insn_t * ptr){
#[

int 32 1 subImage (int [] 16 8 a, int [] 16 8 b, int [] 16 8 res , int 32 1 len)
{

int 32 1 i; // int 32 1 = RISC -V register
// int [] 16 8 = array of C-SRAM lines
for (i = 0; i < len; i = i + 1) // Control done on RISC -V

{
res[i] = a[i] - b[i]; // Workload done on C-SRAM

}
}

return 0;
]#

return (pifiii) ptr ;}

Compiler support
Dynamic interleaving
Instruction generator generator notion

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 19

Introduction Compiler Innovation C-SRAM support Conclusion

HybroGen : ImageDiff-Run

CxRAM Usage
Compute image difference
Iterate on image lines (RISCV)
Use difference operators / 16 pixels wide
(CxRAM)

Dataset

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 20

Introduction Compiler Innovation C-SRAM support Conclusion

CxRAM-Status : Circuit

Chip design evolution
1 chip built, characterized : CSRAM part only,
(photo)
Result published : “A 35.6TOPS/W/mm2
3-Stage Pipelined Computational SRAM with
Adjustable Form Factor for Highly Data-Centric
Applications” 2020
1 chip built, under testing / characterization :
CSRAM + RISCV
Ongoing work on new instruction set variants

IMPACT circuit (2019)

RISCV and CSRAM under testing (2023)

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 21

Introduction Compiler Innovation C-SRAM support Conclusion

Conclusion : Conclusion

Architecture point of view
Application ? Future is not only based on deep
learning !
Parallelism type
Memory layout is a key !

DRAM interleaving
Data locallity / aligment

Tools for collaborations
DSL / Compiler :
https://github.com/CEA-LIST/HybroGen

Emulator, based on QEMU : https:
//github.com/CEA-LIST/csram-qemu-plugin

HybroGen Roadmap
Include data value based run-time optimization
(Already started)
Include explicit data movement for sparse
accelerators
Include variable precision floating point number
Include system level PIM capabilities
more to come on the road

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 22

https://github.com/CEA-LIST/HybroGen
https://github.com/CEA-LIST/csram-qemu-plugin
https://github.com/CEA-LIST/csram-qemu-plugin

	Introduction
	Introduction : Amhdal Law's ?
	Introduction : Niklaus Wirth (15 February 1934, 1 January 2024)
	Introduction : Low Level Programming Models

	Compiler Innovation
	Introduction : CISC-versus-RISC
	Programming Model : Model-and-Compiler
	Compiler Support : Compiler And Architecture Links
	Compilette principle : ``Working Example''
	List of Code Generation Scenarios
	HybroGen : Simple-Add-Source

	C-SRAM support
	Examples : CSRAM (Computational SRAM)
	Inverted Von Neumann Programming Model
	HybroGen : ImageDiff-Run

	Conclusion
	CxRAM-Status : Circuit
	Conclusion : Conclusion

