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Emergence of multi-core systems

• 2004 =⇒ end of the race for higher and higher frequencies
• 1st multi-core chip: POWER4 IBM 2001, 2 cores
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Current multi-core systems
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Dell PowerEdge R6515: 48 CPUs
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Why doing simulation of such systems?

• Experiment and evaluate architectural design choices

• Provide support for early software development on non-existing
platforms

• Facilitate software quality on complex hardware/software platforms
(continuous integration)

=⇒ Simulation tools are part of the solution
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Simulation: different levels of abstraction

Exec timeCycle level simulators

days/weeks

hours

seconds
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Instruction set simulation technology: Dynamic Binary Translation

Frontend

Backend

Target
code

Known
pc?

Translation Decoding

Branch
instruction?

Execution

𝜇op Generation Transla-
tion
cache

No

No

Yes

Yes

• Translation Block
(TB): block that
ends with a branch
• Support for parallel

execution
−→ multi-core
systems
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Instruction set simulation technology: Dynamic Binary Translation

1 IN: Target instructions
2 0x00000000000325d6: add a5,a5,a3

3 OP: Intermediate representation
4 ...
5 – 00000000000325d6
6 add_i64 a5,a5,a3
7 ...

8 OUT: Host instructions x86
9 – guest addr 0x00000000000325d6
10 0x7f5204000f93: movq 0x68(%rbp), %r12
11 0x7f5204000f97: addq %r12, %rbx
12 0x7f5204000f9a: movq %rbx, 0x78(%rbp)
13 ...
14 ...

Translation process of a single add instruction

• Translation Block
(TB): block that
ends with a branch
• Support for parallel

execution
−→ multi-core
systems
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Instrumentation

What?
=⇒ Evaluation and analysis of programs

How?

=⇒ Run time analysis
=⇒ Production of traces
Details of what happens during
execution: ex memory accesses

Why?
=⇒ Adding new features, improvement of the simulation (accuracy)
For example a cache...
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Naive Dynamic Binary Translation (DBT) Instrumentation

0x7f1ffbe5692c: auipc a5,237568
call_instrumentation_func()

0x7f1ffbe56930: ld a5,-612(a5)
call_instrumentation_func()

0x7f1ffbe56934: sb s0,0(a5)
call_instrumentation_func()

0x7f1ffbe56938: ld ra,8(sp)
call_instrumentation_func()

0x7f1ffbe5693a: auipc a5,270336
call_instrumentation_func()

0x7f1ffbe5693e: sb s0,1470(a5)
call_instrumentation_func()

0x7f1ffbe56942: ld s0,0(sp)
call_instrumentation_func()

0x7f1ffbe56944: addi sp,sp,16
call_instrumentation_func()

0x7f1ffbe56946: ret
call_instrumentation_func()

Instructions in a Translation Block of the
DBT mechanism

The instruction is the smallest
granularity in the DBT
• Pros: Retrieving information
• Cons: Degrading the

performance

What happens when
instrumenting parallel simulation?
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Problem Statement Outline

Dynamic Binary Translation speed and accuracy trade-offs: investigating
parallel scalability and cache simulation

DBT Simulation Speed
• Scalability of DBT parallel

execution on multi-core host
• Relying on host configuration

to improve simulation time

DBT Simulation Accuracy
• Memory hierarchy model

related to DBT
• General solutions to enhance

accuracy without degrading
performance
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QEMU: Multi-Threaded Tiny Code Generator (MTTCG)

QEMU Processes Host CPUs

virtual CPU 0 CPU 0virtual CPU 1

CPU 1

... ...

CPU nI/O and others

virtual CPU n

CPU 2

...

TCG principle (round-robin)

• Tiny Code Generator
(TCG): cross
compilation tool

• Before 2015:
single-threaded
simulation

• Execution of the virtual
CPUs on one host CPU
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QEMU: Multi-Threaded Tiny Code Generator (MTTCG)

QEMU Threads Host CPUs

virtual CPU 0 CPU 0

virtual CPU 1 CPU 1

... ...

CPU nI/O and others

virtual CPU 2 CPU 2

MTTCG principle

• Tiny Code Generator
(TCG): cross
compilation tool
• Since 2015:

multi-threaded
simulation a b

• Each virtual CPU
executes on a separate
thread

aAlvise Rigo, Alexander Spyridakis, and
Daniel Raho. Atomic instruction translation
towards a multi-threaded qemu. 2016

bEmilio G. Cota, Paolo Bonzini, Alex
Bennée, and Luca P. Carloni. Cross-isa machine
emulation for multicores. 2017
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To pin or not to pin: What is pinning? 1

OS

CPU 0

CPU 3

CPU 1

CPU 2

physical CPUsvCPU 5

vCPU 1

vCPU 0

vCPU 3

virtual CPUs

vCPU 2

vCPU 4

...

...

...

Operating System decides
where to assign the vCPUs

1collaboration with Saverio Miroddi
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To pin or not to pin: What is pinning? 1

CPU 0

CPU 3

CPU 1

CPU 2

physical CPUs
vCPU 5

vCPU 1

vCPU 0

vCPU 3

virtual CPUs

vCPU 2

vCPU 4

...

...

...

Force each virtual CPU to
run on a chosen physical CPU

Goal: Scalability study

1collaboration with Saverio Miroddi
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Implementation in QEMU

Linux interfaces
cpu_set_t and pthread_setaffinity_np

Added command line options
qemu-system-riscv64 \
-smp $total_vcpus,cores=$vcores,sockets=$vsockets,threads=$vthreads \
-vcpu vcpunum=$vcpu_number,affinity=$host_physical_cpu_number \
-vcpu vcpunum=$vcpu_number,affinity=$host_physical_cpu_number \
...

Example
qemu-system-riscv64 -smp 6 \
-vcpu vcpunum=0,affinity=0 -vcpu vcpunum=1,affinity=0 \
-vcpu vcpunum=2,affinity=1 -vcpu vcpunum=3,affinity=1 \
-vcpu vcpunum=4,affinity=2 -vcpu vcpunum=5,affinity=2 ...

CPU 0

CPU 3

CPU 1

CPU 2

physical CPUs
vCPU 5

vCPU 1

vCPU 0

vCPU 3

virtual CPUs

vCPU 2

vCPU 4

...

...

...
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How to choose the affinity?

Dell PowerEdge R910 (lstopo)

• Following the NUMA
(Non Uniform
Memory Access)
architecture of the
host
• Simultaneous
MultiThreading
(SMT): number of
host hardware
threads (harts) per
core, 1 or 2
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Methodology: Parameters

� Simultaneous MultiThreading enabled or not: 16 or 32 CPUs,
� Number of virtual CPUs nc : {1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128},
� Number of threads nt of the PARSEC benchmarks: {1, 2, 4, 8, 16, 24,

32, 48, 64, 96, 128},
� PARSEC threads affinity,
� Pinning QEMU virtual CPUs to physical CPUs,
� Isolcpus to strictly separate the physical CPUs allocation between

QEMU virtual CPU threads and the kernel threads.
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Environment

QEMU Multi-core Targets Host
Benchmarks

full-system PARSEC RISC-V x86
+ Busybear Linux LARGE & Dell PowerEdge R910

ARM 32 CPUs
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Scalability without pinning
nc = number of virtual CPUs, nt = number of threads for the PARSEC application
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Full execution time in QEMU RISC-V nc = nt without
pinning

QEMU has a good
scalability
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Scalability with/without SMT (without pinning)
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Comparison of full execution time in QEMU RISC-V without pinning with
nc = nt for the host machine with and without SMT
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Comparison to pin or not to pin
nc = number of virtual CPUs, nt = number of threads for the PARSEC application
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Comparison of full execution time in QEMU RISC-V nc = nt without pinning
and with pinning
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Is Pinning Helpful?

• Linux perf tool
• CPU migrations: less when pinning
• L1 data cache misses: no significant differences

• ARM: same observations
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execution time in
QEMU ARM without
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DBT speed and accuracy trade-offs: investigating parallel scalability and cache simulation 19 / 41



Introduction QEMU Scalability Fast caches simulation Conclusion

Is Pinning Helpful?

• Linux perf tool
• CPU migrations: less when pinning
• L1 data cache misses: no significant differences

• ARM: same observations

Conclusion:
• Pinning QEMU virtual CPUs not helpful
• Cannot do better than Linux scheduler
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QEMU TCG Plugins

=⇒ Code instrumentation easily and efficiently

QEMU main loop execution

Detect the events2/

TB translation?
TB execution?
instruction execution?
memory access execution?

Plugin x

4/ Retrieve information
and run code

Callbacks

Subscribe
to events1/

3/

Simplified representation of the QEMU TCG plugins mechanism
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QEMU TCG Plugins: existing cache 2 plugin

x ... CPU

Simplified representation of the QEMU cache TCG plugin mechanism

2Mahmoud Mandour. Cache modelling tcg plugin, 2021
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Initial Intuition

• DBT TB per TB execution principle
• In a TB, all instructions are consecutive in memory
⇒ Know which instructions will hit and which might miss

0x800fa7bc: 1141 addi sp,sp,-16 ← possible miss
0x800fa7be: e022 sd s0,0(sp) ← hit!
0x800fa7c0: e406 sd ra,8(sp) ← possible miss
0x800fa7c2: 0800 addi s0,sp,16 ← hit!
0x800fa7c4: 00dbc797 auipc a5,14401536 ← hit!
0x800fa7c8: 2347a783 lw a5,564(a5) ← hit!
0x800fa7cc: eb95 bnez a5,52 ← hit!

Example of static hit/miss decision within a TB
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Implementation in QEMU: Naive cache plugin

x ... CPU
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Implementation in QEMU: Our cache plugin

x ... CPU
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Implementation in QEMU

QEMU TCG Plugins: callbacks
# NAIVE solution
CALL_PLUGIN_ins(...)
0x7f1ffbe5693e : sb s0,1470(a5)
CALL_PLUGIN_ins(...)
0x7f1ffbe56942 : ld s0,0(sp)
CALL_PLUGIN_ins(...)
0x7f1ffbe56944 : addi sp,sp,16
CALL_PLUGIN_ins(...)
0x7f1ffbe56946 : ret

# OUR solution
CALL_PLUGIN_tb(...)
0x7f1ffbe5693e : sb s0,1470(a5)
0x7f1ffbe56942 : ld s0,0(sp)
0x7f1ffbe56944 : addi sp,sp,16
0x7f1ffbe56946 : ret
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Error in Counting Instructions: 1st Problem

Stopped TB execution: page-fault problem 1/4
# Insns in TB
CALL_PLUGIN_tb(...) # 9 insns counted
0x7f1ffbe5692c : auipc a5,237568
0x7f1ffbe56930 : ld a5,-612(a5)
0x7f1ffbe56934 : sb s0,0(a5)
0x7f1ffbe56938 : ld ra,8(sp)
0x7f1ffbe5693a : auipc a5,270336
0x7f1ffbe5693e : sb s0,1470(a5)
0x7f1ffbe56942 : ld s0,0(sp)
0x7f1ffbe56944 : addi sp,sp,16
0x7f1ffbe56946 : ret

Assumption that all instructions
in TB are executed
⇒ Not in practice

# Executed insns until page fault

0x7f1ffbe5692c : auipc a5,237568
0x7f1ffbe56930 : ld a5,-612(a5)
0x7f1ffbe56934 : sb s0,0(a5)
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Error in Counting Instructions: 1st Problem

Stopped TB execution: page-fault problem 2/4
# Insns in TB
CALL_PLUGIN_tb(...) # 9 insns counted
0x7f1ffbe5692c : auipc a5,237568
0x7f1ffbe56930 : ld a5,-612(a5)
0x7f1ffbe56934 : sb s0,0(a5)
0x7f1ffbe56938 : ld ra,8(sp)
0x7f1ffbe5693a : auipc a5,270336
0x7f1ffbe5693e : sb s0,1470(a5)
0x7f1ffbe56942 : ld s0,0(sp)
0x7f1ffbe56944 : addi sp,sp,16
0x7f1ffbe56946 : ret

Assumption that all instructions
in TB are executed
⇒ Not in practice

# New TB after return from handler
CALL_PLUGIN_tb(...) # 7 insns counted

0x7f1ffbe56934 : sb s0,0(a5)
0x7f1ffbe56938 : ld ra,8(sp)
0x7f1ffbe5693a : auipc a5,270336
0x7f1ffbe5693e : sb s0,1470(a5)
0x7f1ffbe56942 : ld s0,0(sp)
0x7f1ffbe56944 : addi sp,sp,16
0x7f1ffbe56946 : ret
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Error in Counting Instructions: 1st Problem

Stopped TB execution: page-fault problem 3/4
# Insns in TB
CALL_PLUGIN_tb(...) # 9 insns counted
0x7f1ffbe5692c : auipc a5,237568
0x7f1ffbe56930 : ld a5,-612(a5)
0x7f1ffbe56934 : sb s0,0(a5)
0x7f1ffbe56938 : ld ra,8(sp)
0x7f1ffbe5693a : auipc a5,270336
0x7f1ffbe5693e : sb s0,1470(a5)
0x7f1ffbe56942 : ld s0,0(sp)
0x7f1ffbe56944 : addi sp,sp,16
0x7f1ffbe56946 : ret

Assumption that all instructions
in TB are executed
⇒ Not in practice

# Executed insns until new page fault

0x7f1ffbe56934 : sb s0,0(a5)
0x7f1ffbe56938 : ld ra,8(sp)
0x7f1ffbe5693a : auipc a5,270336
0x7f1ffbe5693e : sb s0,1470(a5)
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Error in Counting Instructions: 1st Problem

Stopped TB execution: page-fault problem 4/4
# Insns in TB
CALL_PLUGIN_tb(...) # 9 insns counted
0x7f1ffbe5692c : auipc a5,237568
0x7f1ffbe56930 : ld a5,-612(a5)
0x7f1ffbe56934 : sb s0,0(a5)
0x7f1ffbe56938 : ld ra,8(sp)
0x7f1ffbe5693a : auipc a5,270336
0x7f1ffbe5693e : sb s0,1470(a5)
0x7f1ffbe56942 : ld s0,0(sp)
0x7f1ffbe56944 : addi sp,sp,16
0x7f1ffbe56946 : ret

Assumption that all instructions
in TB are executed
⇒ Not in practice
page-fault, wfi, pause

# New TB after return from handler
CALL_PLUGIN_tb(...) # 4 insns counted

0x7f1ffbe5693e : sb s0,1470(a5)
0x7f1ffbe56942 : ld s0,0(sp)
0x7f1ffbe56944 : addi sp,sp,16
0x7f1ffbe56946 : ret

Total instruction counted:
9+7+4=20, 11 wrongly counted
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Error in Counting Instructions: 2nd Problem

Dependency on Simulator Runtime

Unexpected behavior
• Time dependency of the flow of executed target instructions
The faster the simulator, the lower the number of executed
instructions for a given program
⇒ Only for programs running on top of Linux

Causes
• Repeated occurrences of timer interrupts
The more interrupts, the more instructions counted in the
cache statistics
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Error in Counting Instructions: 2nd Problem

Dependency on Simulator Runtime

Unexpected behavior
• Time dependency of the flow of executed target instructions
The faster the simulator, the lower the number of executed
instructions for a given program
⇒ Only for programs running on top of Linux

0 t

Time frame

Δ

QEMU Cache QEMU Cache QEMU Cache QEMU

n instructions

0 t

Time frame

Δ

QEMU Cache QEMU CacheQEMU Cache QEMU

Total ins case 1 (N + 4n) < Total ins case 2 (N + 6n)
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QEMU TCG Plugins: A threaded execution

OUR Cache plugin

...

buffers

QEMU

Subscribe to events:
each memory access execution

Callbacks:
address of the memory access

L1d

Data Cache
Thread

synchronizations

synchronizations

Simplified representation of the L1d implementation in our cache plugin
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Buffers synchronization

VCPU 0

free_buffers

current_buffer

...

VCPU n

free_buffers

current_buffer

...

L1d Thread

full_buffers
...

L1d_run

...
Simplified representation
of the data thread
interactions with the
virtual CPUs

=⇒ Adjustable size
and number of buffers

Out-of-sync from
QEMU execution
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L2 modeling

Mitigations on the L1d threaded simulation
• Scalability of our model
−→ bottleneck with many CPUs
• Out-of-sync simulation
−→ validity of the data in L2

L2 implementation
• Keep our L1i model
• Naive L1d simulation at each memory access

execution

L2

L1i L1d

CPU n
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1 QEMU Scalability

2 Fast caches simulation
Background
Instruction Cache L1i Modeling
Data cache L1d Modeling
L2 Modeling
Results

3 Conclusion
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Environment

QEMU Mono-core Multi-core Target Host
Benchmarks Benchmarks

user-mode PolyBench/C PARSEC RISC-V x86
MEDIUM LARGE PowerEdge R6515

128 CPUs

Why user-mode instead of full-system?
Time dependency, repeated occurrences of timer interrupts (2nd problem)
=⇒ QEMU not run with Linux

What about the 1st problem?
Stopped TB execution
=⇒ Error negligible on instructions (less than 0,001%)
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Versions of QEMU simulated

• vanilla: QEMU without any cache simulation
• cache: QEMU with existing cache plugin, naive solution
• cacheTB: QEMU with a plugin that implements our cache solution

What to expect? ⇒ Our solution between vanilla and cache
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L1i Statistics validation: comparison with existing cache plugin
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L1i Simulation time: Mono-core
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L1i Simulation time comparison

PolyBench/C PARSEC
Speedup of cacheTB over cache 10.87 7.18
Slowdown of cache over vanilla 23.67 59.85
Slowdown of cacheTB over vanilla 2.07 10.16

Mean simulation time ratios.

Conclusion:
• Our L1i is 7 to 10 times faster than the existing cache plugin
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L1d Optimal buffer size and buffer count: Mono-core
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L1d Optimal buffer size and buffer count: Multi-core water_nsquared

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5

6

7

8

9

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Simulation time of the PARSEC
water_nsquared with 4 vCPUs

500 1000 1500 2000 2500 3000 3500 4000
Buffers size

5.5

6.0

6.5

7.0

7.5

W
al

l-C
lo

ck
 T

im
e 

(s
)

256 buffers
512 buffers
1024 buffers
2048 buffers
4096 buffers

Simulation time of the PARSEC
water_nsquared with 64 vCPUs

DBT speed and accuracy trade-offs: investigating parallel scalability and cache simulation 36 / 41



Introduction QEMU Scalability Fast caches simulation Conclusion

L1d Simulation time comparison

PolyBench/C
Config number x size: 1024x1024
Results: no improvements, same execution time as the existing plugin

PARSEC water_nsquared
Config number x size: 4096x256
Results: improvements with 1,2 and 8 vCPUs only

Conclusion:
• Finding the optimal combination of values needs to be done by

investigating each benchmark
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L2 Simulation time comparison

L2 implementation
• Our L1i model
• Naive L1d simulation at each memory access execution

PolyBench/C PARSEC
Speedup cache to cacheTB 2.19 2.43
Slowdown cache to vanilla 38.20 99.79
Slowdown cacheTB to vanilla 17.03 43.14

Mean simulation time ratios.

Conclusion:
• Our memory hierarchy with L2 is 2 times faster than the existing

cache plugin
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1 QEMU Scalability

2 Fast caches simulation

3 Conclusion
Summary
Future works
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Summary

Dynamic Binary Translation speed and accuracy trade-offs: investigating
parallel scalability and cache simulation

DBT Simulation Speed
• QEMU parallel implementation

scales well on a multi-core host
• Bypassing host Linux scheduler

with pinning does not have any
effect

DBT Simulation Accuracy
• Significant results with per TB

execution of DBT mechanism
for instruction cache model
• Limited results with separated

threaded data cache
simulation
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Future works

Cache coherency
• Copies of a data among the cache levels
• Must ensure correct state of all the

caches
• Scalability?

L2

L1i L1d

CPU 0

L2

L1i L1d

CPU 1

L3

...

L2

L1i L1d

CPU n-1

L2

L1i L1d

CPU n

L3

Dependency on QEMU runtime
• Full-system mode reflects more closely the reality
• Deeper understanding of QEMU time handling mechanisms

Cache simulation and security
• Attacks related to caches
• Pseudo timed cache simulation
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