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ABSTRACT

Knowledge of data values at run-time allows us to generate
better code in terms of efficiency, size and power consump-
tion.

This paper introduces a low-level compiling technique based
on a minimal code generator with parametric embedded sec-
tions to generate binary code at run-time. This generator
called a “compilet” creates code and allocates registers using
the data input. Then, it generates the needed instructions.
Our measurements, performed on Itanium 2 and PowerPC
platforms have shown a speed improvement of 43% on the
Itanium 2 platform and 41% on the PowerPC one.

The proposed technique proves to be particularly useful in
the case of intensively reused functions in graphic applica-
tions, where the advantages of dynamic compilation have
not been fully taken into account yet.

1. INTRODUCTION

Many different techniques [17] improve code performance
in terms of efficiency, power consumption or size. In classi-
cal static compilation, heuristics or other techniques such as
loop unrolling or strength reduction are used. But, the infor-
mation knowledge such as data values is missing at compile-
time which would be very useful for statements generation
when data values and invariants can be exploited [15]. The
resulted code where less computations have to be executed,
is often superior in speed to statically optimized code. As the
data values can change at each run, the profile-based tech-
nique is not really convincing. The dynamic compilation is
then the most suitable technique which complements static
compilation taking advantage of data values and invariants
for every run[11].

New methods have been introduced with the appearance of
virtual machines. Java [10], for instance, has split compiling
into a two-step process, consisting of two translation phases
(source to bytecode and bytecode to native) and an execu-
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tion phase. The first stage generates platform-independent
bytecode, and the second one, at run-time, generates tar-
get code on demand. This is called the Just In Time (JIT)
compiler principle [1]. Target-dependent code is generated
only at run-time, using a complex piece of code linked to
the Java virtual machine (JVM). Hence, it takes time to
compile a method, especially when we want apply any kind
of optimization, and when this compilation has to be done
each time the application is run. Moreover, a good JIT is
complex and takes up a considerable amount of space.

Another optimization method uses techniques to inline as-
sembly code inside a C program. The gcc asm extension is
an example of such. It allows to inline assembly instructions
inside a source function. Another example is the Altivec
extension for gcc which allows the use of multimedia in-
structions that many C compilers can not generate. But, in
this case, developers must have an extended knowledge of
every platform on which they program, and of their spe-
cific instructions, in order to optimize the code, as assembly
is platform-dependent. This technique is frequently used in
image processing as compilers do not usually have the ca-
pability to use graphical instructions without a link to a
specific multimedia library.

This paper deals with applying dynamic compilation to mul-
timedia applications on two different platforms using a toolkit
called ccg [5][20]. Multimedia applications become one of the
main used ones on personal computers[4]: because of the
spreading use of complex processes geared towards them,
mainstream users are requiring increasingly more efficient
computers, at the lowest possible cost[13]. Hence, this topic
represents a challenging target for us. We are working to-
wards this goal by achieving more with a given computation
power, in spite of an unavoidable overhead due to the dy-
namic code generation. The proposed technique determines
the threshold at which reuses will off-set the overhead. In ad-
dition, it generates only the instructions that will be needed
to process the data. Another advantage is that we use all
the instruction set, even the graphical instructions, without
relying on any multimedia libraries. However, we have to
solve the problem of this code generation cost which at run-
time can be high [8][7] and higher as the code complexity
increases.

In section 2, we describe our experimental environment and
the methodology used to create our “compilets”. In section
3, we present and discuss our results on convolution filters



and geometric transformations. In section 4, we review some
related work putting in prospect our contribution. Finally,
in section 5, we conclude with several directions that will be
explored in future research.

2. EXPERIMENTAL ENVIRONMENT

Dynamic compilation is not a new concept, but our intention
is to apply it efficiently to multimedia, where some interest-
ing restrictions exist and make interesting our algorithm of
code generation. For this study, the execution of speed im-
provement have been monitored.

2.1 Methodology

To validate our approach, we experimented two multime-
dia applications, the convolution filter and a vector-matrix
multiply. Convolution consists in applying a matrix to each
image pixel, in order to create another image where pixels
are a linear combination of their neighbors (Figure 1). We
use the multimedia instructions which allow to process data
values as vector or pixel and not as an integer or a float us-
ing saturated arithmetics to reduce the number of assembly
statements and the size of the generated code.
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Figure 1: Example of a small image and convolution
filter

In the vector-matrix multiply experiment, we consider an
implementation from OpenGL Mesa-6.0.1, which contains
unrolling and linearization:

image processing, pixels, generally described by 4-byte in-
tegers, are controlled by the saturated arithmetics. For this
reason we break the usual compilation rules in our algorithm
by eliminating either the multiply operations by zero or by
one. We can consider that this removal is of little conse-
quence. Besides, it brings two benefits: first, the operations
number is reduced as all the computations which are useless
(multiplication by 1 or 0) disappear; Second, this reduction
of instructions number decreases the execution time.

2.2 Overview of the compilets system

Our technique operates in two steps at runtime. The first
one is to call a compilet, defined at compile-time in ccg lan-
guage, which generates binary code according to the target
architecture, the knowledge of data and our algorithm (Fig-
ure 2 and more detailed [2]).

for(i=0 ; i<4 ; ++i)
if (0.0 == mat[row] [i])
| if(0==1) genSub(regDst(1no),regDst(lno),reghst(1lno));
else
if (1.0 == mat[row] [i])
if (0==i) genMove (regDst (1no),regSrc(i));
g 8! g
else enAdd (regDst (1no) ,regSrc(i) ,regDst(1no));
g g g g
else
if(-1.0 == mat[row] [i])
if (0==1 enNeg (regDst (1no) ,regSrc(i));
(0==1) genNeg(regDst(1no),regSrc(i))

| | else genSub (regDst (1no) ,regSrc(i) ,regDst(1no));
else
| 1£(0==1) genMul(regDst(1no),regMat(lno,0),
|| regSrc(0));
else genMulAdd (regDst (1no) ,regMat (1no,i),

regSrc(i),regDst(1no));

Figure 2: Part of a compilet for a vector-matrix multiply

As the optimization of the dynamic generated code is done
only at the level of 3D transformations and not at the level
of data retrieval, there is a waste of time and space with
the loading of zeroes and ones. Hence, another “parametric
embedded code” of machine code has been added:

tmp = m[i] [0];
if ((0==opt) || ((1.0'=tmp) && (-1.0!=tmp) && (0.0!=tmp)))
genLoad (regMat (i, j) ,SIZEOFFLOAT* (4*i+j) ,regBase(0));

d[0]= v[0l*m[ 0] + v[1l*m[ 1] + v[2]*m[ 2] + v[3]*m[ 3];
d[1]= v[0l*m[ 4] + v[1l*m[ 5] + v[2]*m[ 6] + v[3]*m[ 71;
d[2]= v[0]*m[ 8] + v[1]*m[ 9] + v[2]*m[10] + v[3]*m[11];
d[3]= v[0]*m[12] + v[1]*m[13] + v[2]*m[14] + v[3]*m[15];

where v represents the source vector, m the
unidimensional array which contains the matrix values
and d, the destination vector.

For the last experiment, we use two variants according to
our algorithm: the standard form which is equivalent of the
static version with some little improvements such as a better
use of ILP, and the optimized form is not really that opti-
mal, but is easy to set up. It consists in reducing loads and
arithmetic instructions.

Besides, a specific algorithm has been created to take into
account the particular arithmetics associated to pixels. In

A compilet consists in reducing loads and arithmetic instruc-
tions such as computations by zero. It chooses adequate
instructions and generates correct register allocation for a
given matrix and a given architecture. The generated binary
code is an executable function.

The second phase consists in calling this minimal generated
function to execute the multimedia application.

One of the interests of our approach is the fact that all of our
codes are written in C language in which several segments of
dynamic code are embedded via an ISA (Instruction Set Ar-
chitecture) which gives a portability to the compilets on dif-
ferent architectures. Hence, a developper can only use some
defined compilets without any knowledge of the architecture.

2.3 Hardware and Software setup

Our experiments are made on Itanium 2 and PowerPC archi-
tectures. The Itanium processor is a uniprocessor operating




at 900 MHz with 2 GB of memory. The cache memory hi-
erarchy is organized in three levels, the L1D level of 16 KB,
the L2 level unified of 256 KB and the L3 level of 1.5 MB.
The PowerPC is a 800 MHz processor machine with 256 MB
of memory. The cache memory hierarchy is organized in two
levels: the L1 cache of 32KB and L2 cache of 256 KB.

The test machines were respectively running Linux Red Hat
7.1 based on 2.4.18 SMP kernel for Itanium 2 and MacOS
10.2.3 Darwin Kernel version on PowerPC.

The compiler for all platforms is the 3.3 version of gcc.
We observe some constraints in the choice of the compila-
tion options (set to CFLAGS=-07 -fno-inline -ffast-math)
for all platforms. Other more specific information such as
-mepu=970 -mtune=970 for PowerPC are added. Results
are given in CPU cycles and are an average of 100000 of
experimental measures.

3. RESULTS
3.1 \Vector-Matrix experiments

Here (Figure 3), we focused exclusively on the cost of run-
ning a function dynamically generated using both modes,
standard and optimized, compared to one in a standard
static C version. First, we notice the amount of time saved.
In the case of the IPF architecture, in any experiment, we
get, at best here, a 30% speed improvement with our dy-
namic version compared to the static version generated by
the gce v3.3 compiler. From that, we verify that gcc compil-
ers do not take yet advantage of the specifics of IPF architec-
ture (such as microSIMD), as it does for PowerPC architec-
ture. In the last experiment, the performance of our dynamic
versions, and the opportunity to use them, depends strictly
on the number of zeroes in the transformation matrix. The
main reason is that static compilers have schedulers able
to interleave data loadings and arithmetic operations. Our
optimized version, which has been made at little cost, has
those instructions kept apart.

In the previous section, we compared the dynamic and static
versions of our different transformations only in their use.
We voluntarily omitted the cost of the dynamic code gen-
eration here. However, the overhead of this generation can
not be neglected and, to redeem it, we have to reuse the
dynamic version several times. Our goal is to find a satisfy-
ing compromise from which dynamic compilation becomes
profitable.

In Table 1, the cost of the code generation is detailed for
both versions: the optimized and the standard one. The cost
is relatively important for all platforms, particularly on Ita-
nium 2 platform, where ccg has a scheduler to choose the
template fields (a tag which declares explicitly the instruc-
tion type on IPF).

Platforms | Std. code (cycles) | Opt. code (cycles)
Itanium 2 19580 16260
PowerPC 5780 6370

Table 1: Overhead in CPU cycles for dense matrices
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Figure 3: Comparison between the different dynamic
versions and their C counterpart by architecture

This simple experiment is suitable to show the dependency
between overhead redeeming of code generation and function
reuses.

On the Itanium platform (Figure 4), the overhead due
to the generation of dynamic code, standard or optimized, is
redeemed starting from 400 uses of the generated function.
It is an acceptable number, as regular exploitation of a 3D
transformation can use more than one million points. In the
case of a 3D and scaling transformation respectively, the cost
of the optimized generated code is covered at only 200 uses
with a 16% and 28%speedup improvement.

The highest speedup improvement of around 43% has been
obtained for the processing of 50000 points with the dynam-
ically generated function. This means that dynamic compi-
lation will reach an optimal efficiency with 3D scenery which
size is usually around one million points or more. However
its efficiency appears since around 300 points. This gain,
earned thanks to a small effort of conception and coding,
largely justifies the use of dynamic compilation for image
processing on the Itanium architecture.
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Figure 4: Itanium 2 Architecture

On the PowerPC platform (Figure 5), for a dense matrix,
the overhead of compilation is still significant to be redeemed
in a small number of uses and, once more, our dynamic ver-
sions are not enough efficient in comparison with the static
function. We have there to go above 1000 uses of our dy-

namic function for the dynamic compilation to be profitable.
However, in the case of image processing, once again the re-
sult is acceptable. This observation gets reversed when the
matrix contains three or more zeroes. We then get a clear
advantage favoring the dynamic version over the static ver-
sion, as we get 8 to 256% speedup improvement compared to
the latter.

The highest speedup improvement of around 41% is reached
for a 10000 points processing with the dynamically gener-
ated function. As already noticed, our dynamic version is
here again completely adapted to image processing.
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Figure 5: PowerPC Architecture

Dynamically generated code size and binary com-
pilet size. Our technique bestows another advantage. The
binary code size is smaller compared to the C version gen-
erated by static compilers. Indeed, with our algorithm, all
the useless computations are eliminated. For instance, in the
Itanium 2 architecture, the generated static code has a size
of 658 bytes in the case of a dense matrix. For a geometric
transformation matrix, this size is of 466 bytes and of 370
bytes for a scaling matrix. It is to be noted that on Pow-
erPC, for a dense matrix, the code size is around 168 bytes.
So, the code size on Itanium architecture is twice as large
as its counterparts on PowerPC. In fact, on the Itanium
2 platform, all instructions are inevitably stored per three
in structures named “bundles”. Each bundle contains a tag
named “template field” that determines which functional
unit is able to evaluate the statement and what interlacing
can exist between the functional units. Those template fields
only give the possibility to store a unique floating-point unit
per two bundles and, in order to fill those bundles, ccg adds
“nop” instructions. This explains the code size on [tanium
2 in comparison with its counterparts of other platforms.
However, the generated dynamic code remains smaller on
Ttanium 2 architecture than the static one, at worst by 22%,
and can be reduced by 43% for real scaling matrices.

These results do not take into account the size of the com-
pilet. On all architectures, the memory footprint is below 8
kbytes.

Platforms | compilet code size (bytes)
PowerPC 3260
Itanium 2 7107

The size of the compilet added to the generated code makes
it bigger than its static counterpart. But a same compilet,
of a size hardly reaching 8 kbytes, is intended for intensive
use, can generate several different codes and, above all, able
to elaborate a greatly optimized code.

3.2 Filter experiment

For the convolution filter, we have used the assembly graph-
ical instructions which allow to process data values as vector
or pixel composed by three components and not as an in-
teger or a float using saturated arithmetics. The use of this

multimedia instruction allows to reduce the number of as-
sembly instructions and the size of the generated code.

We also took interest in the size of convolution filter. On
the different platforms, the number of registers available is
variable. For instance, on the IPF architecture, 96 integer
registers are at the service of our convolution filter. But,
on PowerPC, the number of registers is only a half of what
it is on IPF. Taking into account this condition, when the
size of convolution filter is not too large, the matrix can
be stored in register thus allowing to earn back the data
loading time. Hence, we have two possibilities during the
creation of our compilet: the storing in register or the loading
of matrix values. This choice depends on the size of the
convolution filter and on the number of registers in the target
architecture.

In the case of the mean filter (Figure 6), the speedup we ob-
tain using our compilets for code generation is of 4 at worst
on the Itanium 2 architecture, and of 17 at best. In fact,
we use the micro-SIMD instructions parallelism in our com-
pilets, which is adapted to graphic applications, whereas the
gce compiler can only use a classical instruction set. On the
PowerPC platform, our generated code is compared to the
Altivec version, and it notices a speedup of 1.4. Moreover,
with a sparse filter, our compilets obtain, on PowerPC plat-
form a speedup of 3. Finally, we have tested a 5+5 Gaussian
filter and we have obtained on both PowerPC and Itanium
2 platforms, a speedup of 1.5 and 7.6 respectively.
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4. RELATED WORK

Among all researchs on dynamic compilation built over the
last ten years, only a small part is close to our concerns
here. For the majority of them, the dynamic code generator
is often a large and complex program which allows the pro-



grammers to express algorithms in high-level languages such
as Fabius [12], Calpa [16], Dynamo [14] or HotSpot [19]. On
the opposite, our compilet, which uses low level compiler
techniques, is a minimal dynamic code generator which cre-
ates only the needed code with a small cost in terms of size
and coding time.

Some researchs on staged dynamic compilers, which post-
pone a portion of compilation until runtime when code can
be specialized based on runtime values [3][9], focus on spend-
ing as little time as possible in the dynamic compiler per-
forming extensive offline pre-computations. This technique,
which is also used in our compilets negates the need for any
intermediate representation at runtime. However, we choose
to return at low level compiler techniques to take into ac-
count the graphical instruction set for each platform, if it
exists, and obtain better performance.

In the dynamic compilation for multimedia, a group which
has conceived the FFTW [6] does a static optimized code
generation with dynamic scheduling. Our compilet prefers
using a code generator which creates the optimized adapted
code at runtime.

5. CONCLUSION

In this paper, we confirmed that it is possible to use the
data values input as parameters for an effective run-time
code generator in multimedia applications. Results highlight
that the produced binary code can be of satisfying quality,
tailored for the data input, while needing only a slight pro-
gramming effort.

It is important to note that the “compilet” is of very small
size and is platform-independent. With a small program-
ming effort, we get better performance than a static com-
piler consisting of thousands of code lines.

This technique gives direct access to specific instructions of
the target processor. This is an elegant way to deal with
arithmetics such as saturated arithmetics which are seldom
supported by compilers. The C dialtec Cg [18] allows to
generate code for graphical processors but can not mix C and
assembly code nor interact with general purpose processors.

In future works, we will implement those “compilets” in
mainstream applications such as 3D visualization softwares,
and we will include them in more complex run-time pro-
cesses, able to detect when and where this technology will
be useful.
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